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FINDING k& DISJOINT PATHS IN A DIRECTED PLANAR GRAPH*
ALEXANDER SCHRIJVERT

Abstract. It is shown that, for each fixed k, the problem of finding k pairwise vertex-disjoint directed paths
between given pairs of terminals in a directed planar graph is solvable in polynomial time.
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1. Introduction and statement of result. In this paper we show that the following prob-
lem, the k disjoint paths problem for directed planar graphs, is solvable in polynomial time,
for any fixed :

given : a directed planar graph D = (V, A) and k pairs (»1, 1), . .., (7, s¢) of
vertices of D;

¢

find : k pairwise vertex-disjoint directed paths Py, ..., Py in D, where P; runs
fromr;tos;(i =1,...,k).

The problem is NP-complete if we do not fix & (even in the undirected case; Lynch [2]).
Moreover, it is NP-complete for k = 2 if we delete the planarity condition (Fortune, Hopcroft,
and Wyllie [1]). This is in contrast to the undirected case (for those believing NP+#P), where
Robertson and Seymour [4] showed that, for any fixed &, the k disjoint paths problem is
polynomial-time solvable for any graph (not necessarily planar).

In this paper we do not aim at obtaining the best possible running time bound, as we
presume that there are much faster (but possibly more complicated) methods for (1) than the
one we describe in this paper. In fact, recently Reed, Robertson, Schrijver, and Seymour [3]
showed that for undirected planar graphs the k disjoint paths problem can be solved in /inear
time, for any fixed k. This algorithm makes use of methods from Robertson and Seymour’s
theory of graph minors. A similar algorithm for directed planar graphs might exist but probably
would require extending parts of graph minors theory to the directed case.

Our method is based on cohomology over free (nonabelian) groups. For the  disjoint paths
problem we use free groups with & generators. It extends methods given in [5] for undirected
graphs on surfaces based on homotopy. Cohomology is in a sense dual to homology and can be
defined in any directed graph, even if it is not embedded on a surface. We apply cohomology
to an extension of the planar graph dual of D—just applying homology to D itself seems not
powerful enough.

We remark that in our approach free groups and (co)homology are used mainly as a
framework to formulate certain ideas smoothly; they give us a convenient tool for recording
shifts of curves over the plane. No deep group theory or topology is used. We could avoid free
groups and cohomology by adopting a more complex notation and terminology; that would,
however, implicitly mimic free groups and cohomology. The present approach also readily
allows application of the algorithm where the embedding of the graph in the plane is given
combinatorially, that is, by a list of the cycles that bound the faces of the graph.
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2. The cohomology feasibility problem.

2.1. Free groups. The free group Gy, generated by the generators gy, g2, ..., g, con-
sists of all words b1b;---b; where t > 0 and by,...,b; € {g, gl"l, ooy ks gk’l} such that
bibiiy ;égjgj”l and b;b; 4 #gj"lgj fori=1,...,t—=1and j=1,..., k. The productx - y
of two such words is obtained from the concatenation x y by deleting iteratively all occurrences
of any g/gj’l and gj"gj. (So in our notation x - y # xy in general.) This defines a group, with
unit element 1 equal to the empty word @J. We call gj, gl’l. cees ks g,c'1 the symbols. The size
|x| of a word x is the number of symbols occurring in it, counting multiplicities.

A word y is called a segment of a word w if w = xyz for certain words x, z. Itis called a
beginning segment if x = 1 and an end segment if z = 1. A subset " of a free group is called
hereditary if for each word y € I, each segment of y belongs to I".

We define a partial order < on Gy by

() x < y & x is a beginning segment of y.

This gives a lattice if we extend G with an element co at infinity. We denote the meet and
joinby A and V. So x A yis equal to the longest common beginning segment of x and y.
Moreover, x V y = oo exceptif x < yor y < x.

We make two easy observations.

LEMMA 2.1. Let o be a symbol, and let x,z € Gy. If x < o -zandz < o~ - x, then
xVa-z=lorx=z=1

Proof. Let y := x~! - « - z, and suppose that y # 1. Since x < « - z, it follows that
o -z = xy for some )/, and hence y = x~' -a -z = x7! . (xy) = y. Consequently
xy € Gy; and since z < o~ - x, it follows similarly that zy~! € Gy, that is, yz=! € G;.

Since y # 1, this implies that xyz=' € Gy, andso @ = x - y-z~! = xyz~!. In particular,
I =|a| =|x|+ |yl +]z] = |x| + 1 + |z|. Therefore, x =z = 1. a

LEMMA 2.2. Let x, y € Gy. If x £ y, then the last symbol of x is equal to the last symbol
of y™!- x.

Proof. Letz := x A y. Write x = zx" and y = z)/, where x’ # 1. Let « be the first
symbol of x’. Since z = x A y, we know o £ y. Hence (3/)7!-x' = (3)"'x’ (i.e., no
cancellation). Consequently,

3) y =N @) =007 =007
Hence, as x” 1, the last symbol of x is equal to the last symbol of y~! - x. 0

2.2. The cohomology feasibility problem for free groups. Let D = (V, 4) bea weakly
connected directed graph, let r € V', and let (G, -) be a group. (We allow directed graphs to
have parallel arcs.) Two functions ¢, ¥ : A —> G are called r-cohomologous if there exists
a function f : ¥ — G such that

D fr)=1
(i) ¥ (@) = fu)™" - ¢(a) - f(w) for each arc a = (u, w).

One easily checks that this gives an equivalence relation.
Consider the following cohomology feasibility problem for free groups:

“)

given : a weakly connected directed graph D = (V, 4), a vertex r, a function
5) ¢ : A —> Gy, and for each a € 4 a hereditary subset I'(a)of Gy;
find : a function ¥ : 4 —> G} such that ¥ is -cohomologous to ¢ and such that

¥ (a) € T (a) for each arc a.
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We show the following.

THEOREM 2.3. The cohomology feasibility problem for free groups is solvable in time
bounded by a polynomial in |4| + o + k.

Here o is the maximum size of the words ¢ () and the words in the T'(a). (In fact we
can drop k and assume that G is the free group generated by the generators occurring in the
¢ (a) and the words in the I'(a).)

Note that, by the definition of r-cohomologous, equivalent to finding a ¥ as in (5) is
finding a function f : ¥ —> G satisfying

Q) fn=1

©) (i) fw)™" - ¢(a)- f(w) € I'(a) foreach arc a = (u, w).

We call such a function f feasible.
In solving the cohomology feasibility problem for free groups we may assume

(i) T'(a) # @ for each arc a;
(i) |¢(a)| < 1for each arc a;
(iii) with each arc a = (1, w) also a~! = (w, u) is an arc, with ¢ (a™") = ¢ (a)~!
and ['(a™!) = T'(a)~ L

Here I'(@)~' := {x~!|x € I'(a)}. Condition (7)(ii) can be attained by replacing any arc
a = (u,w)suchthat¢(a) = B1---B,and t > 2 by au — w path a; - - a, with ¢{a;) := B
i=1,....,00and I'(g)) := I'(e) and I'(a;) := {1} (i = 2,...,1). (Here and below we
indicate a path P by the string of arcs traversed by P (in the order traversed by P). If P
traverses an arc a in the backward direction, then we denote this in the string by a~!. For
instance, P = aja; la; means that P traverses first ¢, in the forward direction, next a, in the
backward direction, and finally a3 in the forward direction. The arcs need not be distinct.)

2.3. Pre-feasible functions. Let input D = (V, 4), r, ¢, " for the cohomology feasi-
bility problem for free groups (5) be given, assuming (7). We call a function f : V' — G
pre-feasible if

O fn=1
(8) (i) foreacharca = (u, w) with f(u)™" - ¢(a) - f(w) & I'(a) one has f(u) =
Sw)=1

Define a partial order < on the set G,’(’ of all functions f : V — G, by
)] f<g® fv) <gl) foreachveV. O

Itis easy to see that G,’\,’ forms a lattice if we add an element oo at infinity. Let A and V denote
the meet and join, respectively.

Pre-feasibility behaves nicely with respect to the lattice:

PROPOSITION 1. If fi and f; are pre-feasible, then so is [ := fi A fa.

Proof. Clearly f(r) = 1. Leta = (u, w) be anarc such that y := f(u)™"-¢(a)- f(w) ¢
I'(a) while not f(u) = f(w) = 1. By Lemma 2.1 and by symmetry we may assume that
S@) £ ¢(a) - f(w). Let x and x’ be such that fi(¥) = f(u)x and fr(u) = f(u)x’, and let
z and 2’ be such that fi(w) = f(w)z and fo(w) = f(w)z'. Let o and B be the first and last
symbol, respectively, of y. Since z; A z; = 1, we know B~! £ z or 7! £ Z/. Without loss
of generality, 87! £ z.
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Since f(u) £ ¢(a) - f(w), by Lemma 2.2 the first symbol of f)~!is equal to . So
o £ x, and hence

(10) AV @ fitwy=x"tyz=x""yz

So y is a segment of fj(u)~' - ¢(a) - fi(w). By the heredity of I'(a) this implies that
[ @@ - fiw) & T'a). So, as fi is pre-feasible, fi(u) = fi(w) = 1. Therefore
S = f(w) =1 o _

So for any function f : ¥ — G there exists a smallest pre-feasible function f > f,
provided there exists at least one pre-feasible function g > f. If no such g exists, we set
f 1= 00. We observe the following proposition.

PROPOSITION 2. If f is finite, then

(1) f(r) =1and|fW)| < 20|V | for each vertex v,

(ii) foreach arca = (u,w): if fw)~' - ¢(a)  f(w) & T(a), then f(u) < ¢(a) - f(w)

or f(w) <g@™)- fu).
(1

Proof. Clearly, f(r) < f(r) = 1. Moreover, by induction on the minimum number ¢ of
arcs in any » — v path one shows I]'(v)l < 20t. Indeed, if a = (u, v) is the last arc in the
path, then y := f(u)~'- ¢(a) - f) belongs to I'(@) or is equal to ¢ («) and, hence, has size
at most o. So

(12) [f) =) -¢@ "yl < | fwl+1p@|+0c <200 —=1)+1+0 <201

This implies | f(v)| < | f()| < 20|V |.

To see (ii), suppose f(u) £ ¢(a)- f(w) and f(w) £ ¢(a™") - f(u). The first implies
(by Lemma 2.2) that the first symbol of f(u)~' - ¢(a) - f(w) is equal to the first symbol of
(). The second implies (again by Lemma 2.2) ) that the last symbol off(u)~ -¢(a)- f(w)
is equal to the last symbol of f(w). Since f < £, it follows that flu)™! “¢a) - f(w)isa
segmentoff(u)‘ -¢(a)- f(w) So f(u)" ¢ (a)- f(w) ¢ I'(a). Hence, as flsple feasible,

f(u) = f(w) = 1, and therefore /(1) = 1. This contradicts the fact that f(u) £ ¢ (a)- f(w).
0

2.4. A subroutine finding f. Letinput D = (V, 4), r, ¢, " for the cohomology feasi-
bility problem for free groups (5) be given, againassuming (7). We describe a polynomial-time
subroutine that outputs £ for any given f: V — Gy.

If £ is pre-feasible, output f := f£. If f violates (11), output f := co. Otherwise choose
anarca = (u, w) satisfying (1)~ - ¢(a)- f(w) € I'(a) and flw) £ dpa™l)- S (as fis
not pre-feasible and satisfies (11), such an arc exists by Lemma 2.1). Perform the following:

Iteration: Write ¢ (a)- f(w) = xy, with y € I'(a) and | y| as large as possible, reset f(u) := x,
and start anew.

PROPOSITION 3. In the iteration, resetting f increases | f(u)| and does not change f.
Proof. Consider the iteration. Denote by f” the reset f. As (11)(ii) holds, fu) <
#(a)- f(w). Since f(W)™-Pa) f(w) & T'(a), /) is a segment of x with f(u) # x. So
L/ @)l > 1 £
Tosee f/ = f, we must show f” < f, thatis, f'(u) < F(u) if f is finite. Suppose that
£ is finite and that f'(u) £ f(u). Let B be the last symbol ofx = f'(u). Asx £ f(u) and
as¢(a) - f(w) = xy, By is anend segment of f(u)~"- p(a) - f(w).
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Since ¢(a) - f(w) £ fw) (@sx < ¢(a) - f(w)), by Lemma 2.2 the last symbol of
f(u)”1-¢(a)~f(w) isequal to the last symbol of ¢ (a) - f(w). Since ¢(a) - f(w) £ f(u) (as
x < ¢(a)- f(w)and f(u) < f(u)), by Lemma 2.2 the last symbol of ¢ (a) - f(w) is equal
to the last symbol of f(u)™!- ¢(a)- f(w). Since f(w) £ ¢p(a™") - f(«), by Lemma 2.2 the
last symbol of f(u)~} - ¢(a)- f(w) is equal to the last symbol of f(w). Concluding, the last
symboloff(u)"l-¢(a)-f(_w) is equal to the last symbol of f(w). Hence_f(u)“1 -¢(a)-_f(w)
is a beginning segment of f(u)™! - ¢ (a) - f(w). So By is asegment of f(u)~!- ¢ (a)- f(w),
and hence By belongs to I'(a). This contradicts the maximality of y. 0

Since at each iteration | f ()| increases for some vertex u, after at most 20 |V 12 iterations
either we get a prefeasible function f or (11) is violated. Thus the subroutine is polynomial
time.

2.5. Algorithm for the cohomology feasibility problem for free groups. Let input
D = (V,A),r,¢,T for the cohomology feasibility problem for free groups (5) be given. We
find a feasible function f as follows.

Again we may assume (7). For every a = (u, w) € A4 let f, be the function defined by
fa(u) := @(a) and f;(v) := 1 foreach v # u. Let E be the set of pairs {a, a’} from A for
which f, V fu is finite and pre-feasible. Let £’ be the set of pairs {a,a”'} witha € 4 and
¢(a) € T'(a).

We search for a subset X of 4 such that each pair in X belongs to E and such that X
intersects each pairin E’. This is a special case of the two-satisfiability problem and, hence,
can be solved in polynomial time.

PROPOSITION 4. If X exists, then the function [ = \/,_ [ is feasible. If X does not
exist, then there is no feasible function.

Proof. First assume that X exists. Let f be as given. Since f, V fu is finite and
pre-feasible for each two a, ¢’ in X, f is finite and f(r) = 1. Moreover, suppose f(u)! -
¢(a) - f(w) ¢ ['(a) for some arc ¢ = (u, w). Let f(u) = fo(u) and f(w) = fu(w) for
a,a" € X. As fg V f,ris pre-feasible, fo (1) = fa(w) = 1. So ¢(a) & I'(a), and hence
a ora~' belongs to X. By symmetry we may assume a € X. Then

(13) d@) = fiw) < fo(u) < fu) = folu) =1,

a contradiction.

Assume conversely that there exists a feasible function f. Let X be the set of arcs
a = (u, w) with the property that ¢(a) < f(u). Then X intersects each pair in E’. For let
a = (u, w) beanarc satisfyinga ¢ Xanda™! ¢ X, thatis, ¢(a) £ f(u)andp(a™") £ f(w).
Hence f()™" - ¢(a) - f(w) = f()'¢(a) f(w). So f(u)™" - $(a) - f(w) contains ¢ (a) as
a segment (as |¢ (a)| < 1). So ¢(a) € I'(a) and hence {a, a"'} & E'.

Moreover, each pair in X belongs to E. For let {a’, a”} be a pair in X. We show that
{d'.a"} € E, thatis, f' := f, Vv f, is finite and pre-feasible. As a’ € X, we have
¢(a") < f(u) and hence fi < f, implying f,» < f. Similarly, f,» < f. So f' is finite and
fiiry=1 Consider an arc a = (u, w) with y := f'(u)~' - p(a) - /' (w) & T'(a). We may
assume f'(u) = fy(u) and f'(w) = f,(w) (since f, and 7, are pre-feasible). To show
') = f'(w) =1, by Lemma 2.1 we may assume f'(w) £ ¢(a~') - f'(u).

First assume f"(u) £ ¢(a) - f'(w). Then by Lemma 2.2 the first and the last symbols of
Yy are equal to the first symbol of f"(1)~! and the last symbol of f'(w), respectively. Since
S < f, this implies that y is a segment of f(u)~!-¢(a)- f(w) € I'(«). This contradicts the
heredity of I"(a) as y & I'(a).

_ Second assume f"(u) < ¢(a) - f'(w). So d(a)- f'(w) = f'(u)y for some y. Since
Jar(u) < f'(u), it follows that y is an end segment of



FINDING k DISJOINT PATHS IN A DIRECTED PLANAR GRAPH 785

(14) Lo (@Y = for) ™ p@) - flw) = for)™ - ¢@) - For(w).

So fl,n(u)‘_l - ¢ (a) - j—“an(w) & I'(a), since y & I'(a). As fan is pre-feasible, this implies
Sar(w) = far(w) = 1;50 f(w) = 1. Hence f'(u) < ¢(a) and therefore, since y & I'(a)
and |[p(a)] < 1, fl(w) = 1. ]

Thus we have proved Theorem 2.3.

3. The k disjoint paths problem for directed planar graphs.

3.1. Directed planar graphs, R-homology, and flows. Let input D = (¥, 4),
i, 81, ..., i, ¢ for problem (1) be given. In solving (1) we may assume that D is weakly
connected and that foreach i = 1, ..., k, r; is incident with exactly one arc, which is leaving
r;, and s; is incident with exactly one arc, which is entering s;. We fix an embedding of D.
Let F denote the collection of faces of D and let R be the unbounded face of D.

Call two functions ¢, ¢ : 4 — G R-homologous if there exists a function f : F —
G such that

() f(Ry=1;
(15) (i) f(F)™'-¢(a)- f(F') = ¥ (a) for each arc a, where F and F’ are the faces

at the left-hand side and right-hand side of a, respectively.

The relation to cohomologous is direct by duality. The dual graph D* = (F, A*) of D
has as vertex set the collection F of faces of D, while for any arc a of D there is an arc a* of
D* from the face of D at the left-hand side of a to the face at the right-hand side. Define for
any function ¢ on A4 the function ¢* on 4* by ¢*(a*) := ¢(a) foreacha € 4. Then ¢ and
Y are R-homologous (in D) if and only if ¢* and ¥ * are R-cohomologous (in D*).

For any solution I[1 = (P, ..., P;)of (1) let Yy : A — Gy be defined by y¥n(a) ;=g
if path P; traversesa (i = 1, ..., k), and Y(a) := 1 if a is not traversed by any of the P;.

Call a function ¢ : 4 —> Gy a flow if for each vertex v € V with v & {r, sy, ..
i, Sk} one has

.

(16) oa) - p(ar)®- - dpla)™ =1,

where a,, . .., a, are the arcs incident with v, in clockwise order, where ¢; = +1 if a; has its
tail at v and &; = —~1 if g; has its head at v (if @; happens to be a loop we take &; = +1 and
¢; = —1 at the corresponding positions in (16)), and if moreover for any arc a incident with
rpors;onehasp(a) =g (i =1,...,k).

Clearly, if T1 is a solution of (1), then ¥ is a flow. Moreover, if ¢ is a flow and ¢’ is
R-homologous to ¢, then also ¢’ is a flow.

3.2. Deriving a solution from a flow. We first show the next proposition.

PROPOSITION 5. There exists a polynomial-time algorithm that, for any flow ¢, either
finds a solution T1 of (1) or concludes that there does not exist a solution T1 of (1) such that
Y is R-homologous to ¢.

[Here polynomial-time means: polynomial-time in the size of D and the maximum size
of the ¢(a). Note that it is not required that if we find a solution IT of (1), then ¥ is
R-homologous to ¢.]

Proof. Let ¢ be a flow. Consider the dual graph D* = (F, 4*) of D. We construct the
‘extended’ dual graph D* = (F, A4™) by adding in each face of D* all chords. (So D need
not be planar.) More precisely, for any two vertices F, F' of D* and any (undirected) F" — F’
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path  on the boundary of any face of D*, extend the graph with an arc, denoted by a,, from
Fto F'. Define ¢+ : AT —> G, by

@i) 9T (@*) := ¢ (a) for each arc a of D;
(7 Gi) ¢T(an) =@ @)+ ¢ (a;)* for any path m = (a})® - -- (af)* with
&1, ...,8 € {+1,—1}.

(As before, (a)~! means that 7 traverses a; in the backward direction.) Moreover, let
@) :={l,g,....&}and [(az) ;== {1, g, 87" - & & ')

By Theorem 2.3 we can find in polynomial time a function  that is R-cohomologous to
¢* in D*, with ¢ (b) € T'(b) for each arc b of D*, provided that such a ¥ exists. If we find
such a ¥, let P; be any directed r; — s; path traversing only arcs a satisfying ¥ (a*) = g; (for
i =1,...,k). (Such paths exist since ¢ is a flow.) Then P, ..., P, form a solution to (1).
Indeed, Py, ..., P are vertex-disjoint, for suppose that there exist arcs a and b of D that are
both incident with a vertex v and ¥ (a*) = giil, Y(b*) = gji', and i # j. Consider a shortest
path 7 along the face of D* corresponding to v such that r contains arcs a* and b*. We may
assume that we have chosen a and b such that i is as short as possible. Then |¥ (a;)| > 2, as
V¥ (a,) contains both giil and gjil (neither of them can be cancelled, since a and b are chosen
so that 7 is shortest). This contradicts the fact that ¥ (a,) € I'(a,).

If we do not find such a function v, we may conclude that there does not exist a solution

IT of (1) such that ¥ is R-homologous to ¢, since otherwise the cohomology feasibility
problem has a solution, viz. ¥ := (y)*. n

3.3. Enumerating homology types. In this section we show the following.
PROPOSITION 6. For each fixed k, we can find in polynomial time flows ¢, ..., ¢n with

the property that for each solution Il of (1), Yy is R-homologous to at least one of ¢y, . .., Pn.
Proof. Consider systems Il = (Py, ..., P;) satisfying:

(i) P is an undirected path from r; to s;, not traversing the same edge more
(18)  than once, and not having any self-crossing (| =1, ..., k);
(ii) F; and P; are edge-disjoint and do not have any crossing (i, j =1, ..., k; i # j).

(An undirected path is a path that may traverse arcs in the backward direction.)
For any such system 1, define ¥y : 4 —> Gy by ¥n(a) := g if P; traverses a in the

forward direction, ¥ (a) := g7 Vif P, traverses a in the backward direction (i = 1, ..., k),
and Y (a) := 1if a is not traversed by any P;.

We will show that for each fixed k, we can find in polynomial time flows ¢y, . .., ¢n With
the property that

(19)  for each IT satisfying (18), Yy is R-homologous to at least one of ¢, ..., .

This is stronger than what we need to show.

Consider a nonloop arc @’ not incident with any r; or s;. Contract a’, yielding graph D'.
Let ¢, ..., ¢}, be flows in D’ satisfying (19) with respect to D’. Then for each j there is a
unique flow ¢; in D such that ¢;(a) = ¢](a) for each arc a # a’. Moreover, if IT satisfies
(18) in D, then contracting a’ gives a system I1’ satisfying (18) in D’. Hence there exists a j
such that qbl’. is R-homologous to Y- (in D'), implying that ¢; is R-homologous to ¥ (in D).

Concluding, we can obtain from a system of flows satisfying (19) for D’ a system of flows
satisfying (19) for D. Repeating this we obtain that we may assume that there is only one
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vertex vin V' \ {ry, s1,. .., rt, s} and that each arc not incident with v, sy, ..., 7, S¢ is a loop
at v. We may assume that each loop is oriented clockwise (since presently we are interested
in undirected paths). For each loop / let X, be the set of vertices in ry, 51, .. ., r¢, S enclosed

by . Call loops /, " parallel if X; = X;. Trivially, there are at most 2% parallel classes. (By
Euler’s theorem, there are at most 4k parallel classes, but we do not need this stronger bound,
since £ is fixed.)

If I satisfies (18), then there is a system I’ satisfying (18) such that Yy is R-homologous
to ¥ and such that the paths in IT do not contain any loop ! with X; = @ and do not contain
I'I=" or I”'I’ for any two parallel loops /,1". So we can restrict the systems IT to systems
having this additional property.

For any such system IT and any two subsets B, C C {a, a"'|a € A}, let xn(B, C) denote
the number of occurrences of bc in the paths in IT such that b € B,¢ € C. Then IT is up

to R-homology fully determined by the system of numbers xp(B, C), where B and C range
over all sets

20) L, L7! (L a parallel class of loops),
{(r,',v)},{v,Si} (i=1-'~'ak)a
with L=! := {{7!|] € L}. Since each such number xp (B, C) is at most | 4| and since there are

at most 2(k +22) sets among (20), for fixed k we can enumerate all possibilities in polynomial
time. a

3.4. The disjoint paths problem.

THEOREM 3.1. For each fixed k, the k disjoint paths problem for directed planar graphs
(1) is solvable in polynomial time.

Proof. By Proposition 3.3 we can find in polynomial time (fixing k) a list of flows

@1, ..., ¢n such that for each solution Il of (1), ¥ is R-homologous to at least one of the ¢;.
Now for each j = 1,..., N we apply the algorithm of Proposition 3.2 to input ¢;. If
for some j we find a solution IT of problem (1), we are done. If foreachof j = 1,..., N

it concludes that there is no solution IT of (1) such that ¥ is R-homologous to ¢;, we may
conclude that (1) has no solution at all. ]
Quite directly one can extend the method to the following problem:

given : a directed planar graph D = (V, A), k pairs (r1, 51), - .., (r, ;) of vertices

@n of D, and subsets 4, ..., 4; of 4;
find : k pairwise vertex-disjoint directed paths Py, ..., Py in D, where P; runs
from #; to 5; and uses only arcs in 4;(i = 1,...,k).

The polynomial-time solvability of this problem (for fixed k) follows by restricting in the proof
of Proposition 3.2 each I'(a¢*) to those g; for which A4; contains a.
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